The structural basis for phospholamban inhibition of the calcium pump in sarcoplasmic reticulum.

نویسندگان

  • Brandy L Akin
  • Thomas D Hurley
  • Zhenhui Chen
  • Larry R Jones
چکیده

P-type ATPases are a large family of enzymes that actively transport ions across biological membranes by interconverting between high (E1) and low (E2) ion-affinity states; these transmembrane transporters carry out critical processes in nearly all forms of life. In striated muscle, the archetype P-type ATPase, SERCA (sarco(endo)plasmic reticulum Ca(2+)-ATPase), pumps contractile-dependent Ca(2+) ions into the lumen of sarcoplasmic reticulum, which initiates myocyte relaxation and refills the sarcoplasmic reticulum in preparation for the next contraction. In cardiac muscle, SERCA is regulated by phospholamban (PLB), a small inhibitory phosphoprotein that decreases the Ca(2+) affinity of SERCA and attenuates contractile strength. cAMP-dependent phosphorylation of PLB reverses Ca(2+)-ATPase inhibition with powerful contractile effects. Here we present the long sought crystal structure of the PLB-SERCA complex at 2.8-Å resolution. The structure was solved in the absence of Ca(2+) in a novel detergent system employing alkyl mannosides. The structure shows PLB bound to a previously undescribed conformation of SERCA in which the Ca(2+) binding sites are collapsed and devoid of divalent cations (E2-PLB). This new structure represents one of the key unsolved conformational states of SERCA and provides a structural explanation for how dephosphorylated PLB decreases Ca(2+) affinity and depresses cardiac contractility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Keeping calcium in its place: Ca(2+)-ATPase and phospholamban.

Electron microscopy is gradually revealing more and more about the structure of the calcium pump from the sarcoplasmic reticulum, Ca(2+)-ATPase. The most recent result reveals the ATP-binding site, and two different avenues are being pursued towards achieving a higher resolution structure. Although no such structures are currently available for phospholamban, various spectroscopies and site-dir...

متن کامل

Phosphorylation and mutation of phospholamban alter physical interactions with the sarcoplasmic reticulum calcium pump.

Phospholamban physically interacts with the sarcoplasmic reticulum calcium pump (SERCA) and regulates contractility of the heart in response to adrenergic stimuli. We studied this interaction using electron microscopy of 2D crystals of SERCA in complex with phospholamban. In earlier studies, phospholamban oligomers were found interspersed between SERCA dimer ribbons and a 3D model was construct...

متن کامل

Lethal, hereditary mutants of phospholamban elude phosphorylation by protein kinase A.

The sarcoplasmic reticulum calcium pump (SERCA) and its regulator, phospholamban, are essential components of cardiac contractility. Phospholamban modulates contractility by inhibiting SERCA, and this process is dynamically regulated by β-adrenergic stimulation and phosphorylation of phospholamban. Herein we reveal mechanistic insight into how four hereditary mutants of phospholamban, Arg(9) to...

متن کامل

The physical mechanism of calcium pump regulation in the heart.

The Ca-ATPase in the cardiac sarcoplasmic reticulum membrane is regulated by an amphipathic transmembrane protein, phospholamban. We have used time-resolved phosphorescence anisotropy to detect the microsecond rotational dynamics, and thereby the self-association, of the Ca-ATPase as a function of phospholamban phosphorylation and physiologically relevant calcium levels. The phosphorylation of ...

متن کامل

Atomic-level mechanisms for phospholamban regulation of the calcium pump.

We performed protein pKa calculations and molecular dynamics (MD) simulations of the calcium pump (sarcoplasmic reticulum Ca(2+)-ATPase (SERCA)) in complex with phospholamban (PLB). X-ray crystallography studies have suggested that PLB locks SERCA in a low-Ca(2+)-affinity E2 state that is incompatible with metal-ion binding, thereby blocking the conversion toward a high-Ca(2+)-affinity E1 state...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 288 42  شماره 

صفحات  -

تاریخ انتشار 2013